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Thermodynamics of dissipative quantum systems by effective potential
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Classical-like formulas are given in order to evaluate thermal averages of observables belonging to a
quantum nonlinear system with dissipation described by the Caldeira-Leggett model@Phys. Rev. Lett.46, 211
~1981!; Ann. Phys.~N.Y.! 149, 374 ~1983!#. The underlying scheme is thepure-quantum self-consistent
harmonic approximation, which leads to expressions with a Boltzmann factor involving aneffective potential
and with a Gaussian average. The latter describes the effect of the fluctuations of purely quantum origin. As an
illustration we calculate the coordinate probability distribution for a double-well potential in the presence of
various degrees of Ohmic dissipation.@S1063-651X~97!50405-3#

PACS number~s!: 05.30.2d, 05.40.1j, 05.70.2a
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The concept of effective potential, meant to reduce qu
tum statistical mechanics calculations to classical ones,
first introduced by Feynman@1,2#. He introduced a varia-
tional principle for the path-integral expression of the pa
tion function—the Feynman-Jensen~FJ! inequality—and
used it with a ‘‘free particle’’ trial action.

A significant improvement has been achieved by G
chetti and Tognetti@3,4# and independently by Feynman an
Kleinert @5# using a quadratic trial action with the sam
variational principle. For nonstandard systems, where the
inequality is generally not valid, thepure-quantum self-
consistent harmonic approximation~PQSCHA! gives a way
to construct an effective Hamiltonian, thus recovering
phase-space concept and the classical-like formulas for t
mal averages@6,7#.

Several successful applications in different branches
condensed matter physics pointed out the power of the
proach@7#. In the case of open systems, little work has be
done for taking into account the quantum dissipation in
effective potential formalism; indeed, in asystem-plus-
reservoirmodel, only the effective potential for expressin
the partition function as a configuration integral has be
given, both for linear@8,9# and nonlinear coupling@10# with
environmental oscillators.

By using the PQSCHA approach, that is equivalent to
variational method, we present here an accurate derivatio
the density matrix of a nonlinear system interacting with
heat bath through theCaldeira-Leggett~CL! model @11#.
This model considers the system of interest as linearly in
acting with a bath of harmonic oscillators, whose coordina
can be integrated out from the path integral, leaving the
Euclidean action
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\ Fm2 q̇2~u!1V„q~u!…G
2E

0

b\ du

4\ E
0

b\

du8k~u2u8!„q~u!2q~u8!…2.

~1!

The kernelk(u)5k(b\2u) is a function that depends o
temperatureT51/b and on the spectral density of the env
ronmental bath@9#. The density matrix elements in the coo
dinate representation are expressed by Feynman’s path
gral as

r~q9,q8![^q9ur̂ uq8&5E
q

q9D@q~u!#e2S[q~u!] , ~2!

where the path integration is defined as a sum over all p
q(u), with uP@0,b\#, q(0)5q8, andq(b\)5q9.

As suggested by Feynman@2#, we can rearrange the pat
integral ~1! summing over classes of paths that share
same average point

r~q9,q8!5E dq̄ r̄~q9,q8;q̄ !, ~3!

r̄~q9,q8;q̄ !5E
q8

q9D@q~u!#d„q̄2q̄ @q~u!#… e2S[q~u!] ,

~4!

where q̄ @q(u)#5(b\)21*0
b\du q(u) is the average poin

functional. Furthermore, as only paths with a fixed avera
point q̄ appear in the path integral~4!, from action~1! we
define a trial actionS0@q(u)# by replacingV„q(u)… with a
trial quadratic ‘‘potential’’

V0~q;q̄ !5w~ q̄!1 1
2mv2~ q̄ !~q2q̄ !2, ~5!
R4849 © 1997 The American Physical Society
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where the parametersw(q̄ ) andv2(q̄ ) are now to be opti-
mized, so that the trial reduced densityr̄0(q,q;q̄) at best
approximatesr̄(q,q;q̄), for each value of q̄. Note that
V0(q,q̄ ) is not related to a quantum observable, since it
pends onq̄: so, the first part of the trial action is also no
local.

The evaluation of the trial reduced densityr̄0(q9,q8;q̄ ),
in spite of the fact that the action is quadratic, is rath
tricky: on the one hand, the known general method of cal
lating the minimal action fails since its minimization give
rise to infinite order equations of motion, and, on the ot
hand, the method of Fourier expansion of the paths in te
of discrete Matsubara components conflicts with the op
ness of the paths, since we are indeed looking also for
off-diagonal part of the density matrix (q9Þq8). However,
the second way may still be followed by transforming as

r̄~q9,q8;q̄ !5 lim
«→0

H 1
F«

R D@q~u!#d„q̄2q̄ @q~u!#…

3e2S[q~u!] J ; ~6!

the integral is over allclosedpaths$q(u)uuP@0,b\#% that
satisfy the constraintsq(«)5q8 andq(b\2«)5q9. F« is
the integral over the open paths$q(u)uuP@2«,«#% ~the
range @b\2«,b\# is periodically mapped onto@2«,0#)
with end pointsq(2«)5q9 andq(«)5q8; for small « it is
dominated by the kinetic contribution

F«5S m

4p\2« D 1/2expF2
m

4\«
~q92q8!21O~«!G . ~7!

Now the paths in Eq.~6! can be Fourier expanded,

q~u!5q̄12(
n51

`

~xncosnnu1ynsinnnu!; ~8!

nn52pn/(b\) are the Matsubara frequencies and then0
component is justq̄, as it appears from the inverse transfo
mation. The measure of the path integral then becomes@2#

S m

2p\2b D 1/2E dq̄ )
n51

` mbnn
2

p E dxndyn , ~9!

and the trial action takes then the form

S0@q~u!#5bw~ q̄ !

1bm(
n51

`

@nn
21v2~ q̄ !1nng~nn!#~xn

21yn
2!.

~10!

Here we have made use of the relation that connects
kernelk(u) with the Laplace transformg(z) of the real-time
memory damping functiong(t) @9#

k~u!5
m

b\ (
n52`

`

einnuunnug~z5unnu!. ~11!

While it is trivial to manage thed function that fixesq̄, the
end-point constraints are implemented by inserting thed
-

r
-

r
s
-
e

he

functionsd„q(b\2«)2q9… andd„q(«)2q8…, and then us-
ing their Fourier representation. The calculation ofr̄0 can
then be carried forward by Gaussian quadratures giving

r̄ 0~q9,q8;q !5S m

2p\2b D 1/2 e2bw~ q̄ !

m~ q̄ !

3 lim
«→0

F 1F«

e2j2/c«

Apc«

e2z2/s«

Aps«
G , ~12!

wherej[ 1
2 (q81q9)2q̄ andz[q92q8,

m~ q̄!5 )
n51

`
nn
21v2~ q̄ !1nng~nn!

nn
2 , ~13!

c«5
4

bm (
n51

`
cos2nn«

nn
21v2~ q̄ !1nng~nn!

, ~14!

s«5
16

bm (
n51

`
sin2nn«

nn
21v2~ q̄ !1nng~nn!

. ~15!

In the last expressions, the leading terms for small« are
c«52a(q̄)1O(«), and, in a less straightforward wa
@11,12#, s«54\«/m@12(2«/\m)l(q̄)1o(«)#, with

a~ q̄!5
2

bm (
n51

`
1

nn
21v2~ q̄ !1nng~nn!

, ~16!

l~ q̄!5
m

b (
n52`

`
v2~ q̄ !1unnug~ unnu!

nn
21v2~ q̄ !1unnug~ unnu!

. ~17!

Eventually, the limit in« can be easily taken, and the resu
reads

r̄0~q9,q8;q̄ !5S m

2p\2b D 1/2 e2bw~ q̄ !

m~ q̄ !

e2j2/2a~ q̄!2l~ q̄!z2/2\2

A2pa~ q̄ !
.

~18!

Now, if r0(q9,q8)—obtained using the last result in Eq
~3!—is taken as an approximation for the exact density m
trix r(q9,q8), we have a way to explicitly calculate an
quantum thermal average by two Gaussian quadratures
a single integral inq̄. A more convenient formalism deal
with phase space: let us briefly show it.

The Weyl symbol for an observableÔ5Ô( p̂,q̂ ) is the
phase-space functionO(p,q) that is defined in terms of the
matrix elements in coordinate space as@13#

O~p,q!5E dz e2 ipz/\^q1 1
2 zuÔuq2 1

2 z& . ~19!

By means of a simple property of Weyl symbols the avera
of Ô takes the form of a phase-space integral,

^Ô&5
1

ZE dpdq

2p\
r~p,q!O~p,q!. ~20!
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From Eqs.~3! and~18! the Weyl symbol for the trial density
operator turns out to be

r0~p,q!52p\S m

2p\2b D 1/2 E dq̄
e2bw~ q̄ !

m~ q̄ !

3
e2j2/2a~ q̄!

A2pa~ q̄ !

e2p2/2l~ q̄!

A2pl~ q̄ !
, ~21!

where j[q2q̄. Therefore, the average of any observa
Ô( p̂,q̂ ) can be expressed as a classical formula

^Ô&5
1

ZS m

2p\2b D 1/2 E dq̄^̂ O~p,q̄1j!&&e2bVeff~ q̄!,

~22!

where the double bracket is the Gaussian average oper
over p and j, with moments ^̂ j2&&5a(q) and ^̂ p2&&
5l(q̄); the effective potential is defined as

Veff~ q̄ ![w~ q̄!1b21lnm~ q̄ !. ~23!

In order to determine the functionsw(q̄) andv2(q̄) we
impose the PQSCHA condition, i.e., we require that the
tential V(q) and the trial potentialV0(q;q̄ ,) together with
their derivatives up to second order, have equal avera
with respect to the reduced~diagonal! density r̄0(q,q;q̄).
The condition for the first derivatives is overcome by t
definition of the average point, so that we are left with

^̂ V~ q̄1j!&&5 ^̂ V0~ q̄1j!&&[w~ q̄ !1
m

2
v2~ q̄ !a~ q̄ !,

^̂ V9~ q̄1j!&&5 ^̂ V09~ q̄1j!&&[mv2~ q̄ !. ~24!

The latter condition must be solved self-consistently with
definition of a(q̄ ) in terms ofv2(q̄ ), Eq. ~16!. Now we
have all the necessary ingredients to explicitly evaluate
effective potential and all the thermal averages through
classical-like expression~22!. As in the case of no dissipa
tion, it can be seen that for the most usual potentials
self-consistent solution fora(q̄ ) turns out to be always posi
tive, even thoughv2(q̄ ) can be negative@4,5#. Indeed, what
matters is thata, Eq. ~16!, is a decreasing function ofv2,
with a divergence to1` @which in the dissipative case hap
pens atv2→2n1

22n1g(n1)].
In the case ofOhmic dissipation, corresponding to

g(z)5g5const @i.e., the memory is Markovian,g(t)
5gd(t20)], one can seethat the (q̄-dependent! mean-
square momentuml(q̄ ), Eq. ~17!, is divergent in the Ohmic
case. Correspondingly, alsom(q̄ ), Eq. ~13! diverges. The
physical reason for this, basically related to the uncerta
principle, is well discussed in Refs.@9,11#. Here we note that
the coordinate mean-square fluctuationa(q̄ ) is still well de-
fined, and that the effective potential can be made finite
subtraction of the infinite butq̄-independent quantity
b21lnm1, with m15)n51

` @11g(nn)/nn#. Therefore, Eq.
~22! is still meaningful in the case of observables that do
depend on momentum.

For a given potentialV(q̂), it is convenient to devise a
characteristic energy scalee ~e.g., the barrier height for a
ing
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double-well potential, the well depth for physical potentia
that vanish at infinity, etc.! and a length scales ~such that
variations ofV comparable toe occur on this length scale!
and writeV(q̂ )5ev(q̂/s). In this way one better deals with
the dimensionless coordinatex̂5q̂/s. If xm is the absolute
minimum of v(x), the harmonic approximation~HA!
of the system is characterized by the frequen
v05Aev9(xm)/ms2; a dimensionless coupling parameterg
for the system can be defined as the ratio between the
quantum energy level splitting\v0 and the overall energy
scalee,

g5
\v0

e
5S \2v9~xm!

mes2 D 1/2. ~25!

The case of weak~strong! quantum effects occurs wheng is
small ~large! compared to 1. In the following application w
shall make use of the dimensionless variables only, i.e.,
ergies are given in units ofe, lengths in units ofs, frequen-
cies in units ofv0, and so on; the reduced temperature
t51/(eb).

Let us then consider the double-well quartic potential

v~x!5~12x2!2. ~26!

It has two degenerate symmetric minima inxm561, with
v9(xm)58. From the PQSCHA equations~24! and the defi-
nitions ~23! and ~16! we obtain

veff~x!5~12x2!223a2~x!1t lnm~x!, ~27!

m~x!5 )
n51

`
~pn!21 f 2~x!1png̃~n!

~pn!2
, ~28!

f 2~x!5
g2

8t2
@3x213a~x!21#, ~29!

a~x!5
g2

16t (
n51

`
1

~pn!21 f 2~x!1png̃~n!
, ~30!

FIG. 1. Configuration densityP(x)5^d( x̂2x)& of the double-
well quartic potential forg55, t51, and different values of the
Ohmic damping parameterG5g/v0. The filled circles are the exac
result forG50; the dotted curve atG5` corresponds to the clas
sical limit.
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where

f ~x!5
b\v~x!

2
5

g

2t

v~x!

v0
, ~31!

g̃~n!5
b\g~nn!

2
5

g

2t

g~nn!

v0
, ~32!

and nn5(2pt/g)v0n. Equations~29! and ~30! have to be
solved self-consistently. This task is done numerically; ex
reference data can be obtained only forg50 by numerical
solution of the Schro¨dinger equation.

In Figs. 1 and 2 we report the shapes of the coordin
probability distribution P(x)5^d( x̂2x)& in the case of
Ohmic damping,g(nn)5Gv05const, at a very strong valu
of the coupling,g55; this gives a~nondissipative! ground
state energye051.394, and the first excited level i
e15e012.355. When dissipation is switched onP(x) tends
towards the classical distributionPc;e2v(x)/t.

Figure 3 shows typical results found for the average
tential energyv(t)5^v(x)&. By comparing with the exac
data atG50 it appears that the PQSCHA gives very accur
results, in spite of the strong coupling. At lowest tempe

FIG. 2. Same as Fig. 1, forg55, t52.
v

ct

te

-

e
-

tures the PQSCHA tends to the ordinary self-consistent h
monic ~or one-loop! approximation, since the effectiv
Boltzmann factor tends to ad function.

However, a more physical model should involve a no
Markovian memory damping function; in such a model the
would be at least one more characteristic frequency s
~e.g., the frequencyvD in the Drude model@9#! above which
g(z) rapidly vanishes. In this case all averages make se
and whereas the averages of coordinate-dependent ob
ables tend again to the classical behavior~in other words, the
environment quenches the pure-quantum coordinate fluc
tions!, those of momentum-dependent ones go in the op
site direction due to the momentum exchanges with the
vironment. Of course, the PQSCHA expressions are e
more useful in these physical situations. Further details
applications, as well as the extension to the case of m
degrees of freedom, will be given in a forthcoming paper

Useful discussions with Professor Ulrich Weiss are
knowledged. We are also grateful to Dr. Klaus Kirsten~Uni-
versity of Leipzig! for providing us with an elegant deriva
tion of the tricky expansion of Eq.~15!.

FIG. 3. Average potential energyv5^v(x)& of the double-well
quartic potential vs temperature, forg55 and different values of
G5g/v0. The filled circles are the exact result forG50; the dotted
curve atG5` corresponds to the classical limit.
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