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Thermodynamics of dissipative quantum systems by effective potential
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Classical-like formulas are given in order to evaluate thermal averages of observables belonging to a
quantum nonlinear system with dissipation described by the Caldeira-Leggett [Rbgs| Rev. Lett46, 211
(1981); Ann. Phys.(N.Y.) 149 374 (1983]. The underlying scheme is theure-quantum self-consistent
harmonic approximationwhich leads to expressions with a Boltzmann factor involvingtactive potential
and with a Gaussian average. The latter describes the effect of the fluctuations of purely quantum origin. As an
illustration we calculate the coordinate probability distribution for a double-well potential in the presence of
various degrees of Ohmic dissipatid®1063-651X97)50405-3

PACS numbe(s): 05.30—d, 05.40+j, 05.70—a

The concept of effective potential, meant to reduce quan- Bt dulm
tum statistical mechanics calculations to classical ones, was S d(u)]= 7[5 g%(u)+V(g(u))
first introduced by Feynmafl,2]. He introduced a varia- 0
tional principle for the path-integral expression of the parti- phodu (ph , o
tion function—the Feynman-Jenser(FJ)) inequality—and _fo a7 fo du'k(u=u")(q(u)—q(u’))*.
used it with a “free particle” trial action.

A significant improvement has been achieved by Gia- (1)
chetti and Tognettji3,4] and independently by Feynman and
Kleinert [5] using a quadratic trial action with the same The kernelk(u) =k(B% —u) is a function that depends on
variational principle. For nonstandard systems, where the Figmperaturél = 1/8 and on the spectral density of the envi-
inequality is generally not valid, the@ure-quantum self- ronmental batt9]. The density matrix elements in the coor-
consistent harmonic approximatigPQSCHA gives a way dinate representation are expressed by Feynman’s path inte-
to construct an effective Hamiltonian, thus recovering thedral as
phase-space concept and the classical-like formulas for ther-
mal average$6,7].

Several successful applications in different branches of
condensed matter physics pointed out the power of the ap-
proach[7]. In the case of open systems, little work has beenyhere the path integration is defined as a sum over all paths
done .for taking into account thg quantum dissipation in they(u), with ue[0,8%], q(0)=q’, andq(Bh)=q".
effective potential formalism; indeed, in aystem-plus- As suggested by Feynm4g], we can rearrange the path
reservoir model, only the effective potential for expressing integral (1) summing over classes of paths that share the
the partition function as a configuration integral has beersame average point

given, both for lineaf8,9] and nonlinear coupling0] with
environmental oscillators. _ o
By using the PQSCHA approach, that is equivalent to the P(Q"yQ')=f da p(9”,9';d), (©))
variational method, we present here an accurate derivation of
the density matrix of a nonlinear system interacting with a

p(q”,q’)E<q”|ﬁIQ’>:qu”D[q(U)]e‘S[‘““”’ (2)

hegt bath through thé:aldeira—Legggtt(CL) merI [11].. p(q",q':q) = q,p[q(u)]g(q__ﬂq(u)]) g~ Slawl
This model considers the system of interest as linearly inter- q

acting with a bath of harmonic oscillators, whose coordinates (4)
can be integrated out from the path integral, leaving the CL _ 184 ) ]
Euclidean action where q[q(u)]=(8%) */§"du q(u) is the average point

functional. Furthermore, as only paths with a fixed average
point q appear in the path integré), from action(1) we
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where the parametems(q) and w?(q) are now to be opti-  functions 5(q(B% —¢)—q") and 8(q(s)—q’), and then us-
mized, so that the trial reduced densjiy(q,q;q) at best ing their Fourier representation. The calculation pgf can

approximatesp(q,q;q), for each value of g Note that then be carried forward by Gaussian quadratures giving
Vo(d,q) is not related to a quantum observable, since it de-

pends ong: so, the first part of the trial action is also non- o m

local. o o Po(Q",Q’;q)=<2Wﬁgﬁ
The evaluation of the trial reduced density(9”,q";q),

in spite of the fact that the action is quadratic, is rather

1/2 o= pw(a)

w(q)

tricky: on the one hand, the known general method of calcu- % lim 1 e &1 g s, (12)
lating the minimal action fails since its minimization gives e—0 | Fe \me, Vms, |
rise to infinite order equations of motion, and, on the other
hand, the method of Fourier expansion of the paths in termghere¢=1(q'+q”)—q and¢=q"—q’,
of discrete Matsubara components conflicts with the open-
ness of the paths, since we are indeed looking also for the * VP4 Q)+ vay(vy)
off-diagonal part of the density matrixq{(#q'). However, w=]] = > ALALL (13
the second way may still be followed by transforming as n=1 Vn
_ _ 1 I *
p(q”,q’;q)=limo[; ff;D[q(U)]é(q—q[q(U)]) Cszi CO_SZ””S , (14)
oL BM =1 i+ w?(d) + vay(vy)
=S[q(u]} -
e } ' © 16 sirfv,e
. . e~ o 2 2 — . (19
the integral is over altlosedpaths{q(u)|ue[0,8#4]} that BM i=1 vi+ w?(q) + vay(vn)

satisfy the constraintg(¢)=q’ andq(Bh—¢)=q". F.is ) ]
the integral over the open patigi(u)|uc[—e,s]} (the In the last expressions, the leading terms for smakre
range [ B4 —e,B%] is periodically mapped ontp—e,0]))  C.=2a(d)+O(e), and, in a less straightforward way
with end pointsg(—&)=q” andq(e)=q’; for smalle itis  [11,12, s,=4he/m[1—(2e/fim)\(q)+o0(e)], with
dominated by the kinetic contribution

[

__ 2 1

m |2 m a(q)= -— — , (16)

fs:(m) ex"[‘ 27.(@'—a)°+0(e) | (D) AM =1 v+ (@) + vpy(vy)

Now the paths in Eq(6) can be Fourier expanded, . m ®?(q) + | vq ¥(|val)
Na)=— o . (1

o B nE=e vpt 0(q) +|voly(|va))
=q+ +YnSi ;
a(w=a 22’1 (XnCOS/AU+ YnSiNwoUl); ® Eventually, the limit ine can be easily taken, and the result

reads
v,=2mn/(Bh) are the Matsubara frequencies and the
component is just, as it appears from the inverse transfor- .
mation. The measure of the path integral then becdi?es po(q",q’;q)=<

m )1/2 e~ AW(@) e—é/m@—x@f/zh?
2 J— —
2mh B () 2ma(q)

vz ompgy? (18
| o [ axdy. @ | - |
n=1 T Now, if po(q”,q")—obtained using the last result in Eq.

(3)—is taken as an approximation for the exact density ma-
trix p(gq”,q’), we have a way to explicitly calculate any
Solq(u)]=Bw(q) quantum thermal average by two Gaussian quadratures plus
a single integral ing. A more convenient formalism deals
- > o s with phase space: let us briefly show it.
+angl [vat (@) +vay(ra) (X yn)- The Weyl symbol for an observabl@=O(p,q) is the
phase-space functiof(p,q) that is defined in terms of the
(10 matrix elements in coordinate space[&8]

( m
2mh°B

and the trial action takes then the form

Here we have made use of the relation that connects the

kernelk(u) with the Laplace transforny(z) of the real-time @(p,q)zf d¢ efip§/ﬁ<q+% §|@|q— %§>_ (19
memory damping functior(t) [9]

m = By means of a simple property of Weyl symbols the average
k(u)= B n;m e vl y(z=|wy|). (1)  of O takes the form of a phase-space integral,
While it is trivial to manage thes function that fixesq, the > :EJ dpdq
end-point constraints are implemented by inserting the (O) Z) 2wh p(P.A)O(p.q). 20
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From Eqgs.(3) and(18) the Weyl symbol for the trial density
operator turns out to be

_e_ﬁw(m
dqg

1/2
Po(PaQ):Zﬂ'ﬁ<m) J

©(q)
e &2a(@ o-p%2\(0

X — —,
V2ma(q) V27N (q)

(21)

where é=q—q. Therefore, the average of any observable

@(b,q) can be expressed as a classical formula

. 1 m 1/2 L . o
<(9>:§<m deI«@(paqﬂLé)»e_BVe“@,

(22
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where the double bracket is the Gaussian average operating FIG. 1. Configuration densitf(x) =(5(X—x)) of the double-

over p and ¢ with moments {(£2)=a(q) and (p?)
=\(q); the effective potential is defined as

Ver(@)=w(q)+ B~ HInu(q).

In order to determine the functions(q) and w?(q) we

(23

well quartic potential forg=5, t=1, and different values of the
Ohmic damping parametér= y/ w,. The filled circles are the exact
result forI’=0; the dotted curve df =« corresponds to the clas-
sical limit.

double-well potential, the well depth for physical potentials

impose the PQSCHA condition, i.e., we require that the pothat vanish at infinity, et¢.and a length scale (such that

tential V(q) and the trial potentiaV,(q;q,) together with

variations ofV comparable tae occur on this length scale

their derivatives up to second order, have equal averagend writeV(g)=ev(§/o). In this way one better deals with

with respect to the reduce@liagona) density po(,9;q).

the dimensionless coordinate=§/o. If X, is the absolute

The condition for the first derivatives is overcome by theminimum of v(x), the harmonic approximationHA)

definition of the average point, so that we are left with
_ _ - m ___
(V(a+ &) =(Vo(a+&)=w(a)+ 5 0*(@)a(q),

(V'(@+)=(Vo(a+&H=mw*(q). (24)

The latter condition must be solved self-consistently with the 9=~

definition of a(q) in terms of w?(q), Eq. (16). Now we

of the system s characterized by the frequency
wo= ev"(xm)/ma?; a dimensionless coupling parametgr

for the system can be defined as the ratio between the HA
guantum energy level splittingwg and the overall energy
scalee,

ﬁwO (hZUU(Xm))IIZ
2 .

(25

Meo

have all the necessary ingredients to explicitly evaluate thdhe case of weakstrong quantum effects occurs whenis
effective potential and all the thermal averages through thémall (large) compared to 1. In the following application we
classical-like expressiof22). As in the case of no dissipa- shall make use of the dimensionless variables only, i.e., en-
tion, it can be seen that for the most usual potentials thergies are given in units af, lengths in units otr, frequen-
self-consistent solution fag(q) turns out to be always posi- cies in units ofwg, and so on; the reduced temperature is

tive, even thoughw?(q) can be negativf4,5]. Indeed, what
matters is that, Eq. (16), is a decreasing function ab?,

with a divergence te- [which in the dissipative case hap-

pens atw’— — vi— vy y(vy)].

In the case ofOhmic dissipation corresponding to
v(z)=y=const [i.e., the memory is Markovian,y(t)
=vy58(t—0)], one can sedhat the @-dependent mean-
square momenturn(q), Eq.(17), is divergent in the Ohmic
case. Correspondingly, alse(q), Eqg. (13) diverges. The

t=1/(eB).
Let us then consider the double-well quartic potential

v(x)=(1-x%)>2. (26)

It has two degenerate symmetric minimaxgp=*1, with

v"(Xy) =8. From the PQSCHA equatiori2g4) and the defi-
nitions (23) and (16) we obtain

physical reason for this, basically related to the uncertainty

principle, is well discussed in Refid,11]. Here we note that
the coordinate mean-square fluctuatiefg) is still well de-

fined, and that the effective potential can be made finite by

subtraction of the infinite butg-independent quantity
B Ynuy, with w,=TI7_[1+ y(vy)/v,]. Therefore, Eq.

(22) is still meaningful in the case of observables that do not

depend on momentum.

For a given potentiaV(§), it is convenient to devise a
characteristic energy scale (e.g., the barrier height for a

ver(X) = (1—x%)%=3a%(x) +t Inu(x), 27
“(wn) 2+ f24(x) + wny(n)
noo=11 ()2 9
g2
f2(X)=W[3x2+3a(x)—l], (29
,
()= ! (30

16t = (mn)%+ f2(x)+any(n)’
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FIG. 2. Same as Fig. 1, fag=5, t=2. FIG. 3. Average potential energy=(v(x)) of the double-well
quartic potential vs temperature, fge=5 and different values of
where I'= vyl wqy. The filled circles are the exact result ior=0; the dotted

curve atl'=o0 corresponds to the classical limit.
Bho(x) g o(x)

f(x)= = , (31  tures the PQSCHA tends to the ordinary self-consistent har-
2 2t wo monic (or one-loop approximation, since the effective
Boltzmann factor tends to & function.
(n)= Bhiy(vy) 9 y(vn) 32 However, a more physical model should involve a non-

2 2t wy Markovian memory damping function; in such a model there
would be at least one more characteristic frequency scale
and v,=(27t/g) won. Equations(29) and (30) have to be (e.g., the frequencyy in the Drude model9]) above which
solved self-consistently. This task is done numerically; exact(2) rapidly vanishes. In this case all averages make sense,
reference data can be obtained only for0 by numerical and whereas the averages of coordinate-dependent observ-
solution of the Schidinger equation. ables tend again to the classical behaviomother words, the
In Figs. 1 and 2 we report the shapes of the coordinat&nvironment quenches the pure-quantum coordinate fluctua-
probability distribution P(x)=(8(k—x)) in the case of UONS, those of momentum-dependent ones go in the oppo-
Ohmic dampingy(»,,) =T wo=const, at a very strong value site direction due to the momentum exchanges with the en-
of the coupling,g=5; this gives a(nondissipative ground vironment, O.f course, the_ PQSCHA expressions are even
state energye,=1.394, and the first excited level is more useful in these physical situations. Further details and

e,=ey+2.355. When dissipation is switched @tx) tends ggplr'gggoor;sf'reaes dgvrﬁ”veﬁl I:)hee ?\)/(;inisr:oan f;?trt\rclirﬁiise ‘;f (renrany
towards the classical distributioh,~e ™", 9 , g g paper.

Figure 3 shows typical results found for the average po- Useful discussions with Professor Ulrich Weiss are ac-
tential energyv(t)=(v(x)). By comparing with the exact knowledged. We are also grateful to Dr. Klaus Kirstemi-
data afl’=0 it appears that the PQSCHA gives very accurateversity of Leipzig for providing us with an elegant deriva-
results, in spite of the strong coupling. At lowest tempera-tion of the tricky expansion of Eq15).
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